* Step 1: DependencyPairs WORST_CASE(?,O(1))
+ Considered Problem:
- Strict TRS:
cons(x,y) -> x
cons(x,y) -> y
f(s(a()),s(b()),x) -> f(x,x,x)
- Signature:
{cons/2,f/3} / {a/0,b/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {cons,f} and constructors {a,b,s}
+ Applied Processor:
DependencyPairs {dpKind_ = DT}
+ Details:
We add the following dependency tuples:
Strict DPs
cons#(x,y) -> c_1()
cons#(x,y) -> c_2()
f#(s(a()),s(b()),x) -> c_3(f#(x,x,x))
Weak DPs
and mark the set of starting terms.
* Step 2: UsableRules WORST_CASE(?,O(1))
+ Considered Problem:
- Strict DPs:
cons#(x,y) -> c_1()
cons#(x,y) -> c_2()
f#(s(a()),s(b()),x) -> c_3(f#(x,x,x))
- Weak TRS:
cons(x,y) -> x
cons(x,y) -> y
f(s(a()),s(b()),x) -> f(x,x,x)
- Signature:
{cons/2,f/3,cons#/2,f#/3} / {a/0,b/0,s/1,c_1/0,c_2/0,c_3/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {cons#,f#} and constructors {a,b,s}
+ Applied Processor:
UsableRules
+ Details:
We replace rewrite rules by usable rules:
cons#(x,y) -> c_1()
cons#(x,y) -> c_2()
f#(s(a()),s(b()),x) -> c_3(f#(x,x,x))
* Step 3: Trivial WORST_CASE(?,O(1))
+ Considered Problem:
- Strict DPs:
cons#(x,y) -> c_1()
cons#(x,y) -> c_2()
f#(s(a()),s(b()),x) -> c_3(f#(x,x,x))
- Signature:
{cons/2,f/3,cons#/2,f#/3} / {a/0,b/0,s/1,c_1/0,c_2/0,c_3/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {cons#,f#} and constructors {a,b,s}
+ Applied Processor:
Trivial
+ Details:
Consider the dependency graph
1:S:cons#(x,y) -> c_1()
2:S:cons#(x,y) -> c_2()
3:S:f#(s(a()),s(b()),x) -> c_3(f#(x,x,x))
The dependency graph contains no loops, we remove all dependency pairs.
* Step 4: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Signature:
{cons/2,f/3,cons#/2,f#/3} / {a/0,b/0,s/1,c_1/0,c_2/0,c_3/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {cons#,f#} and constructors {a,b,s}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(?,O(1))